# Commercial production of charcoal from greenwaste

using Bigchar technology

Dr. James Joyce Principal Engineer Black is Green Pty Ltd

March 2010

### **Presentation Outline**

About BiG

Background to BiG and BiGchar

Features and Benefits of the technology

Potential Applications



#### Black is Green Pty. Ltd.

- Private Australian company based in Mackay and Maleny, Queensland.
- Established specifically to develop and patent a process for the conversion of agricultural and animal wastes, to charcoal



### Why make charcoal from wastes?

- Charcoal increases crop yields by as much as 100%
- Wastes are a low cost, sometimes negative cost, feedstock
- Converts troublesome wastes to useful products and energy
  - For supplementary firing of furnaces/boilers
  - For generation of electricity
- · Charcoal is a substitute for coal that can earn carbon credits
- Recovery of investment possible in under 12 months
  - Biochar revenues 65-100% of return
  - Heat/Energy/Fuel replacement revenue/savings up to 35% of return
  - Waste disposal service fees / carbon credits up to 25% of return

#### Background to the design process

#### Focussed on minimising charcoal production costs

- 1. Issues with production costs:
  - Dispersed and seasonal feedstocks
  - High cost of transporting biomass to/from centralised facilities
  - Handling costs multiple handling steps are very costly
  - Typical costs 10-35% capital, 35-65% labour, 25-50% feedstock (incl. handling)
- 2. Need to reduce the size of the initial investment (barrier to entry)
  - Capital costs currently >\$1M for 5 tonne/day of char from existing technologies
- Chose a simple continuous processing concept with an objective of being easily mobilised/relocated.
  - Allows the equipment to go to the biomass to simplify the logistics
  - Continuous processes maximise throughput and minimise manning requirements

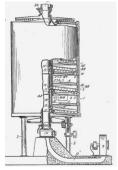
### The old way

Pits and batch ovens

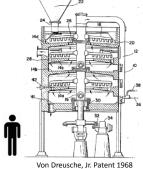
Unacceptable smoke emissions

• Labour intensive

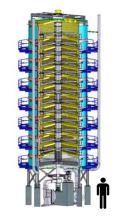
· Low throughput





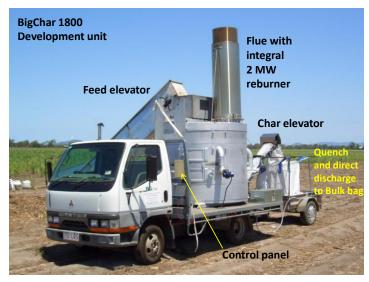




### **BiGchar Technology**


- A variation on the Nichols-Herreshoff rotary hearth furnace
  - A concept first patented by R.D. Pike in 1921
  - Mostly used for mineral ore roasting, but also used for charcoal manufacture since the late 1940's
  - Proven technology for a wide range of applications





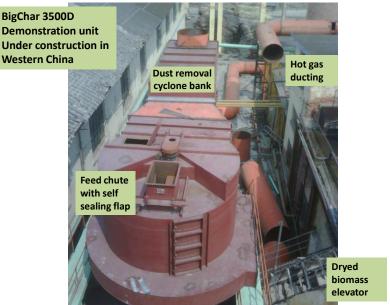



www.bigchar.com.au



A modern Herreshoff rotary hearth furnace Source: Industrial Furnace Company Inc.

### BiGchar 1800 Fast Rotary Hearth




www.bigchar.com.au

### BiGchar 2200 Fast Rotary Hearth



### BiGchar 3500 Fast Rotary Hearth



### Capabilities and Features

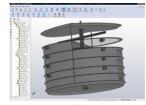
- Designed specifically for biochar production from "difficult to handle feedstocks"
  - Grasses, leafy/trashy feeds
  - Partly shredded, mixed materials
  - High moisture materials (up to 40%)
- Scaleable

Mobile  $\Rightarrow$  Relocatable  $\Rightarrow$  Fixed 8–25 tpd 20-100 tpd 40-1000 tpd

- Efficient
  - Mobile units use DC power < 1200 Watts
  - Self fuelling, apart from flue gas pilot flame



### Capabilities and Features


#### Flexible

- Using swap out components for easy in-field maintenance.
- Rotary hearth process very readily "tuned" to give a desired time-temperature pyrolysis profile
- Readily adaptable to a wide variety of feedstocks and applications, including heat re-use, steam generation, and power generation.

#### Safe

- Designed by Australians to Australian industrial safety standards
- Standard mobile units use only 24 Volt electrics.
- Technology developed and supported by Australians.









# Potential for biochar production from many feedstocks

#### IF IT CAN BE IGNITED IT CAN BE BIGCHARRED



Any greenwaste Any animal waste

- Prefer feed moisture <30%</li>
  - can fire an external dryer for feeds up to 60% moisture.
- Prefer chipped to <25mm</li>
- sand, rocks and steel contamination can be catered for.
- Cannot be used for not radioactive, explosives or materials that release aggressive chemicial fumes
- Even sorted garbage can be used.

#### Status and Plans

- Development unit (BiGchar 1800)
  - Operating in development mode since June 2009
  - Set up now on a permanent demonstration site
- First commercial BiGchar 2200 unit undergoing pre-delivery testing
  - Nominal 1.2 t/hr, 3 Megawatt thermal capacity
  - Seeking customers for the roll out of these units
- 500 tpd unit for biomass drying application soon to be commissioned in China
- Several demonstrations in preparation
- Seeking partners for technology roll-out



#### **Potential applications**

- · Soil fertility improvement
  - Reduced loss of nutrients to run-off & percolation
  - Recycle of nutrients to the land they came from
  - Remarkable water holding capacity
  - Restore pH of acid soils
  - Improved microbial activity
  - Strong synergies with composting. Much better at retaining C in soil.
- Remediation of contaminated, damaged or poor soils
  - Including hydrocarbon and herbicide/pesticide contamination
- Waste reduction
  - Reduce or cease greenwaste volumes to landfill. Reduces mass by 60-80% and volume by 50-95%.
  - Dispose of manures and sewage solids without odour and disease issues.
     Process sterilises at 400-600 deg C.

#### **Potential applications**

#### · Bushland fuel load reduction

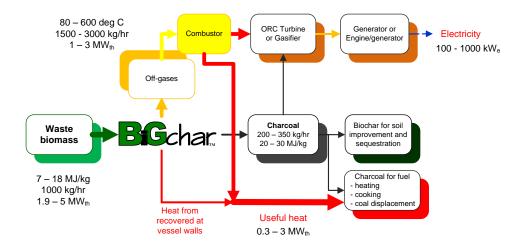
#### Weed control

- Charring process destroys most seeds
- Roadside verges, bushland, scrubland, desert areas

#### Cogeneration of heat, steam and power

- For heating and drying applications, including pre-drying of feedstock
- Energy independence for remote sites, including islands
- Steam for rendering and food processing plants
- Desalination

#### Fossil fuel replacement


- Coal and gas
- Liquid fuels, yes ... but not easily.

#### Carbon sequestration

- Biochar process makes less methane than aerobic composting
- 1 tonne of carbon = 3.7 Tonnes of CO<sub>2</sub> (2 tonne biochar ≈ 1 tonne carbon)
- Retained in soil is 100's to 1000's of years (half life of compost is far less)
- Can sequester carbon at the same time as achieving soil fertility benefits.

www.bigchar.com.au

### Summary of Application Scope



## BGChar ... sometimes Black is Green

