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Introduction

The pre-Columbian indigenous population estimates of the Amazon Basin lowlands
are highly uncertain and the subject of considerable controversy. Proponents of the
low population density suggest that the forest is pristine, delicate, and sensitive to
human disturbance. If populations were high, it is likely that Amazonian forest
vegetation had been significantly altered and may be thought of as a cultural
artifact, resilient to human disturbance and not an undisturbed forest. One of the
archaeological sources used in reconstruction of Amazonian societies are
Amazonian black earths (ABE) or in Portuguese, terra preta soils. The immense
size of Amazonia, remoteness of many areas, forest vegetation, and lack of
archaeological field surveys, make remote sensing beneficial to archaeological
studies in this region. Remote sensing allows for comparison and analysis of
vegetation across vast areas. Previous research has shown that hyperspectral
image data can detect vegetation canopy chemistry differences, associated with soil
nutrients and chemistry. This literature suggests that the high nutrient content of
ABE soils will cause detectable changes in vegetation structure, phenology, and/or
foliar chemistry. Hyperspectral remote sensing with dense coverage of the spectral
reflectance of vegetation canopies will provide a key to detection of high nutrient
ABE sites. The broad spatial coverage afforded by the proposed research allows for
the unique opportunity to begin to quantify the Pre-Columbian human impact in
Amazonia through the analysis of the distribution of ABE sites across the region.

Archaeological excavation of terra preta
sites in Brazil. Courtesy of Eduardo Neves
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Figure 1. (A) Locations for the LBA archive of HYPERION data (pink polygons) and known ABE sites (orange
circles) for the Amazon region. (B) Close-up of area near Santarem and the Tapajos National Forest. (C)
Close-up of Rhodonia. Locations for over 700 ABE sites from Eduaro Neves, Johannes Lehmann (pers.
Comm.), and Gerhard Becktold (MS Thesis 1982). Blue squares are test sites that indicate no ABE. These
sites are vital for our statistical analysis.

As part of LBA, NASA acquired 108 Hyperion images of LBA field research sites (Figure 1). Satellite image
acquisition was determined based on the location of LBA eddy flux tower sites and field sites, and interviews
with investigators (Hurtt et al. 2003). As such, these images do not represent a random sampling of the
Amazon region and any conclusions that we draw from this project will need to take potential biases into
account. However, we must point out that there are over 100,000 km? of Hyperion images acquired as part of
LBA, covering 1.1% of the Amazon basin. These represent a broad range of climatic, geological,
topographical, and pedological conditions. We are currently acquiring more images.
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Table 1. Chemical properties of ABE soils and adjacent soils in the central Amazon (from Liang, B., Lehmann, J.,
Solomon, D., Kinyangi, J., Grossman, J., O'Neill, B., Skjemstad, J.O., Thies, J., Luizdo, F.J., Petersen, J., Neves, E.G.,
(2006) Black carbon increases cation exchange capacity in soils. Soil Science Society of America Journal, 70: 1719-1730).
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Figure 5. A schematic diagram of the strategy for the use of
hyperspectral satellite imagery from Hyperion in the
detection of Amazonian black earth (ABE) sites.

The Hyperion instrument is a hyperspectral imager on
board the USGS/NASA EO-1 satellite platform. It is a
high spatial resolution (30 m) pushbroom scanner with a
swath width of approximately 7.5 km and a typical image
length of 140 km. This hyperspectral sensor images the
Earth in 242 separate spectral bands.
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Analysis

Our preliminary analysis was accomplished by first selecting a Hyperion scene near Santarem. We
selected scene (EO1H2270622003233110PN) acquired on August 21, 2003, because of its limited cloud
cover and the fact that multiple coordinates for ABE site were available in this area. A false color
composite image is presented in Figure 2, using R-SWIR (1650 nm), G-NIR (850 nm), and B-R (660 nm).

We next converted the Hyperion digital numbers to reflectances. Eight ground control points (primarily
road intersections) visible in both the Hyperion scene and in previously geo-registered data were used to
geo- register the Hyperion scene. We warped the scene using 1st order polynomial, nearest neighbor
into UTM projection.

Next, we overlayed an ABE vector file that we have compiled from literature sources (Figure 1) over the
georegistered Hyperion image and identified three ABE sites in forested areas (Figure 3). We also
selected three forested non-ABE sites, each approximately 200 m away from an ABE site. It is possible
that these chosen non-ABE sites are actually ABE sites; but they are not known to be ABE sites. We
extracted the Hyperion reflectance data of the 4 nearest pixels (60 m x 60m) for the ABE/non-ABE site.

Using this reflectance data we calculated the mean spectral response of the ABE pixels and non-ABE
pixels, and examined the difference of the two mean spectral responses (Figure 4).

When viewed across the entire visible to SWIR spectrum, the forested areas (both ABE and non-ABE) all
appear to have similar spectral responses, likely because they share broad tropical forest structural and
chemical properties. Closer examination reveals portions of the spectrum at which differences between
ABE and non-ABE sites emerge. Specifically, there are nine portions of the spectrum where the three
ABE sites are completely separable from the three non-ABE sites. These wavelengths include the portion
near the well-documented red-edge inflection point (753 nm), which is know to vary with biomass and
chlorophyll content.

Figure 4. A preliminary analysis of spectral differences between ABE and non-ABE sites. The top panel shows
the difference in spectral response (ABE minus non-ABE) across the full HYPERION spectrum. The three lower
panels show specific spectra that are indicative of differences between three replicated ABE and non-ABE sites
from near Belterra, Para. Panels show specific spectra that are indicative of differences between ABE (white lines)
and non-ABE sites (red lines).

Summary

We conducted a preliminary analysis to demonstrate our conceptual plan and identify potential spectral
differences between ABE sites and non-ABE sites using hyperspectral data from the Hyperion satellite.
Our preliminary analysis indicates that, at three pairs of sites near Santarem, there are spectral
differences between ABE and non-ABE sites. There are nine portions of the spectrum where the three
ABE sites are completely separable from the three non-ABE sites.

This limited demonstration analysis highlights the important opportunity that Hyperion data provide for
identifying and mapping ABE sites. As much as our current knowledge of this forest expands, it is still
limited by ignorance of past disturbance and dynamics as well as the populations and agricultural
practices of previous human societies.

This project is funded by NASA Space Archaeology Program and is in its initial year of funding.



